Non-planarity of the Aniline Molecule

By D. G. LISTER and J. K. TYLER (Chemistry Department, The University, Glasgow W2)

ANILINE may be considered to be a member of a class of molecules of general type $\rm NH_2X$ in which X is an unsaturated system which may act as an electron sink. In a valence-bond picture, the + - structure $\rm NH_2 = X$ may well be an important contributor to the overall state of such a molecule. Formamide (X = CHO), cyanamide (X = CN), and nitramide (X = NO₂) are further molecules of this type and recent microwave studies¹⁻⁷ have shown that, while the $\rm NH_2-X$ bonds are short in these molecules, the amino-nitrogen atoms retain, to a greater or lesser extent, pyramidal configurations. We have now made a study of the microwave spectrum of aniline and conclude that this molecule is also non-planar.

A striking feature of the spectrum, observed at room temperature, is that each ground-state transition is accompanied by a vibrational satellite of comparable intensity. This observation strongly suggests that the molecule is non-planar and that we are observing rotational transitions due to molecules in O^+ and O^- inversion states. Both the O^+ and O^- lines closely follow the behaviour expected for a rigid asymmetric rotor and their relative intensities depend on the particular transition in a way consistent with a molecule having three equivalent pairs of protons.

Some fifty μa , *R*-branch lines were measured for normal aniline in the 20—30 KMc./sec. region and rotational constants obtained from a rigidrotor least-squares fit to the observed frequencies. Ground-state lines have also been measured for C_6H_5NHD . The rotational constants (in Mc./sec.) and moments of inertia (in a.m.u. Å²) are summarized in the Table.

The large negative value of Δ^0 and its behaviour

on deuteration confirms the pyramidal nature of the nitrogen atom. The inertial constants of the C₆H₅N fragment are readily calculable from the data as: Ia' = 88.3667, Ib' = 178.7791, Ic' =267.1659 (all in a.m.u. Å²), resulting in a value

the short bonds found in formamide² (1.376 Å) and cvanamide⁴ (1.346 Å).The degree of nonplanarity is very similar to that of cyanamide for which ϕ is about 38° and in this respect aniline is intermediate between formamide ($\phi \sim 17^{\circ}$) and

		IABLE		
$C_6H_5NH_2$	O+	O -		
А	5617-40	5615-57	Ia	89.9938
В	$2593 \cdot 84$	2592-24	$I^{ m b}_{ m b}$	194.8968
с	1777.04	1776-73	Ic.	$284 \cdot 4792$
C ₆ H ₅ NHD			Δ^{0}	- 0.4114
Α	5571.51		$I_{\mathbf{a}}^{0}$	90 ·7850
в	2493.59		I^{0}_{b}	202.7322
С	1726-11	—		292·8730
$\Delta^{0} = I_{c}^{0} - I_{a}^{0} - I_{b}^{0}$			Δ^{0}	-0.5942

of +0.0201 a.m.u. Å² or Δ' . This figure is good evidence for the planarity of this fragment. If we now make the rather crude assumption that C₆H₅ fragment has a regular geometry and take C-H = 1.084 Å as in benzene⁸ we calculate: C-C = 1.392 Å, C-N = 1.431 Å, N-H = 0.998 Å, / HNH = 113° 54′, $\phi = 39° 21′$ = angle between the C-N bond extended and / HNH bisector.

The C-N bond length of 1.431 Å may be compared with that of 1.474 Å in methylamine⁹ and

- ¹ R. J. Kurland and E. B. Wilson, Jr., J. Chem. Phys., 1957, 27, 585.
 ² C. C. Costain and J. M. Dowling, J. Chem. Phys., 1960, 32, 158.
 ⁸ J. K. Tyler, L. F. Thomas, and J. Sheridan, Proc. Chem. Soc., 1959, 155.
 ⁴ J. K. Tyler, J. Sheridan, and C. C. Costain, to be published.
 ⁵ G. P. Shipulo, Optics and Spectroscopy, 1961, 10, 288; 1962, 13, 335.
 ⁶ D. J. Millen, G. Topping, and D. R. Lide, Jr., J. Mol. Spectroscopy, 1962, 8, 153.
 ⁷ J. K. Tyler, Mol. Spectroscopy, 1963, 21, 39.
- ⁷ J. K. Tyler, J. Mol. Spectroscopy, 1963, 11, 39.
 ⁸ A. Langseth and B. P. Stoicheff, Canad. J. Phys., 1956, 34. 350.
 ⁹ D. R. Lide, Jr., J. Chem. Phys., 1957, 27, 343.

and nitramide^{4.7} have been determined as 370, 710, and 950 cm.⁻¹ respectively.

nitramide⁷ ($\phi \sim 51^{\circ}$). No precise estimate of the

NH, inversion barrier in aniline can be made at

this time, although the relative intensities of the O^+ and O^- transitions suggest that the $O^- - O^+$

separation is probably less than 100 cm.^{-1} The

corresponding barriers in formamide,² cyanamide,⁴

(Received, February 16th, 1966; Com. 096.)